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ABSTRACT N7~ |23
Graviatational radiation from pulsating and rotating objects is
calculated using the formula obtained with the weak field limit of general
relativity. The cases of rotation and oscillation are first considered
separately, Then the effects of roatation on radial oscillations are in-
vestigated. Numerical estimates are made with data relevant to a neutron
star. It is concluded that most of the energy a neutron star may acquire

during it s formation is dissipated rapidly, unless the rotation is quite

slow, M’u

INTRODUCTION ,
The energy loss by gravitational radiation from a system of bodies

moving with velocities small compared to that of light is given by the

weak field limit to general relativity as ( Landau and Lifshitz, 1962)

-dE . q 5 ¥
H T iz g (1)

where 8416 is the quadrupole moment tensor of the mass distribution,

defined as
“801,3 = ])’ (x) (324 p "&p xrl) dX ()

Angular momentum may also be lost through gravitational radiation.

the rate is given by { Peters, 1964 )

_ dla,‘ 26‘ .
At = 2;—5—(_5: 64:3'( B‘M SKW\ (3)

*

Greek letters range from 1 to 3, and summation over repeated
indices 1is understood, unless stated otherwise.
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where L¢ is the i-th component o the angular momentum vector"é’ and
ég)‘K is a completely antisymmetric unit pseudo-tensor.

Makung use of these equations, we calculate the loss of energy and
angular momentum from various oscillationg and rotating systems. From

this we estimate the damping time of the motion.

ROTATING ELLIPSOID

Gravitational radiation from a rotating ellipsoid of mass m, uniform
density f’ and semi-axes (@, a4, &) has been caiculated. { C. W.Chin, 1965 )
We give here a simpler derivation, which will be useful for us later.

Let the angular velocity;{}y be in the z-direction. In the body set
of axes (1’5'3' ), all off-diagonal elements of the quadrupole moment
about the origin vanish because of the reflection symmetry. The diagonal

elements are given by
o .om 2
Do = F (347 -aq ay) *

where i=1, 2, 3 and is not summed over.

In terms of the space set (X'gg ), we have
x’= X cos N + y sm J1 €
‘3/
S’

it
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while for &)L) in the space sct, we have
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Further reductions lead to

-dE iIZ G 6 /2 a )t (
- - an _.a" 7)
125 (¥ e /

If the configuration does not differ much from that of a sphere of

radius R, we can put
A,-a, = ')7 K (7 )
where '7 is a small quantity. Equation (7) can then be written as

-dE g G
Yy ¢S5
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The rotational energy of the ellipsoid may be calculated classically and

is given by

= ﬁm(aﬁ‘qf)le r RN (t0)

Substituting this into equation (7) , we readily find

At o= et
|+ Kkt

()

where

kK = ot 2% gm @*-aq:)*

45« (ar+aq}r (2)
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with %7 small. o is the angular velocity at t=0.
In the case of a Jacobi ellipsoid, 7’2 L also depends on n*t » and
hence eqn.(”) is no longer completely correct. We also remark that

it is not clear whether a rotating neutron star can be a Jacobi ellipsoid.

NON-RADIAL OSCILLATIONS OF A SPHERE
Consider an axisymmetric oscillation of a spherical mass of in-
cempressible fluid of constant density f and radius R . The boundary

surface can be described by

A(8) = R{I—/—Jlﬂ(e) 4 ... +a(44£,,/9)} (i3 )

where the J's are functions of time. We assume c[n <<I . The Pn ’5 are
Legendre functions. Because the fluid is of constant density, equation

is sufficient for the caiculation of the 8.,'3' . Only one diagonal element

need be evaluated sinee the off-diagonal elements vanish because of the axial
symmetry and since ﬂ” = 8)_)_ = --:LL 853 because the trace | of 64 g

vanishes. We find

/0"(:’ N + !
»8” - I Ré1d, T Z (nt1)
d ner. Gn-1)(2nt1)(2nt3)

15 Fostndune (211)(242) L )
ng (X’l*/)(Xm*B)/:{;,_?L;) + O(o(%)

To find the energy loss, we assume:
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where O(no is the amphtude, assumed to vary only slowly with time
s0 that in calculating 8‘) we can treat it as constant.

Up to terms linear in 0‘11 s ,P,v is the only contributing mode

We then find for « the energy loss from the fb-mode, averaged over a

‘s 6)

full cycle in this linearised approximation

G 2
T ™

A

~d& 3
dt i35
Now the energy f,l of the -Pn_ oscillation is given by ( Rayleigh 1945
2
(7 )

[ 2
Jno 6/41.

5

S, = TPR

n(An+1)

(18 )

From equations ((‘) and (/7) » we have
.t.

0(20(&‘) O(Lo(o)e—
(19)

where
j'L 3
K = GmRk S,
2 25 )

We thus see that the P mode oscillation is damped exponentially. Thus



6
after a short time, only the higher modes remain. From equation (/4) ’
we see that the coefficient of the coupled term oy olnsz is of the same order
of magnitude as the square term 0(;: . Thus, for the mode with the largest
amplitude, we can neglect the cross term and take the square term to be

the only contribution to B” , in which case the energy loss expressgion

from this n-th mode becoms

2

-d& | G tead [ Tpm(nw) Y fio)

A1 5 15 [@n1) Gaer) (4nt3)

Equations (’7) and (2 0) then would give

a(,:; (o )r
[+ kn dd

oo () = (21)

where

2 _ 4 3 2
g, = A5¢ Gk o _n (1) r22)

CS  @u-1 )R(ant1) ( 20+3)*

Thus, the higher modes would be damped at a much slower rate than the
f,_ -mode. However, in the non-iinear domain, the dynamic coupling
between the various modes should be considered. This cougling could give
a stronger damping because of energy transfer from the higher modes

into the P, mode. Furthemore, the oscillations would not be purely
harmonic as given by equation (,{) . Thus our analysis should be inter -
preted as giving an essentially qualitative description of the actual picture.

Suppose now the above pulsating object is also rotating slowly.
To the first order in n'/o’ , the energy loss remains unchanged because

it should be even in fI. . Angular momentum, however, will be lost at a
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rate given by equation (3) if the rotation is about an axis other than that of
symmetry, say the x-axis. The loss rate can then be readily calculated

using the same technique that led to equation (7 ) . The résult when we

consider only the JPJ -mode is

e L S etar aln @

For higher modes, the numerical coefficient would be different and olno
would replace oLf; . From equation (23) , it is seen that for smalil

(n/o’) , the rotation is damped much more slowly .than the pulsation. By
the time the pulsation becomes insignificant, mush of the rotation would

still persist.

THE EFFECT OF ROTATION ON RADIAL OSCILLATIONS

In the foregoing we have been considering only the directly radiating
modes. A purely radial mode does not rad@iate; hence energy might be
stored indefinitely in the mode, at least if neutrino processes and the like
are disregarded. However, rotation would destroy the sphericid sym -
metry of the system, again leading to gravitational radiation.

In this section we consider these effects of rotation taking all

: 2 : of vadivs R and

terms of order (‘n'/o’) into account. We consider a sphere¥of uniform
density pulsating in the lowest radial mode when the Lagrzvé'lan displace-

(sot
ment is given by E,* dre™’

weith ol a constant. If this sphere
is given a small uniform rotation, the oscillations are altered both
because the equilibrium shape ids changed and because the pulsation

equations include centrifugal and coriolis ﬁrce terms.

When axisymmetric perturbations are considered, the linearized

equation of motion for g in a rotating frame can be written as} ( Ledoux
Dt ol
and Watraven, 195R) fm SPM Fofm co o danal




»

. . : 5% | prop _ L 2F
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Here unprimed quantities indicate the equilibrium values of a uni-

formly rotating spheroid of constant density, and the primed ones are the

Eulerian perturbed values. ~£ is a Lagrangian displacement with an
assumed time dependence ei‘fé .
2
To solve these gquations, we expand & and &  in powers of JL
AnN

retaining terms up to those of order J* :
€= ¥+ as + N5,
$, = 5.tk +2%,
ge = N &, +J1"‘Eu

54 = Ay + 25,

(27)

For oscillations that are originally axisymmetric, OJ, = 0 .( Clement, [.965)
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Also the right-hand side of (25) is of order ﬂ_z , because the pressure
and the density perturbations should be independent of the sign of S .
Therefore by substituting (»2?) into (?5) and @€) , and comparing terms of

different orders in JL , we obtain

Eo; = g‘v“l =0
. R .
n §¢, = A4 & dum 6 Yro
Sor = 0 @)
SM9\§¢L+CJ)O 292. = O
To solve for E'n or %’m » we now turn to equation (25') . The
right-hand side of the equation involves the perturbed quantities f’ p £,
and §’ . These can be expressed in terms of the equilibrium values
by making use of the continuity equation, Poisson's equation and the

adiabatic relation between pressure and density variations respectively,

as follows:

P""'*I’d"“f—}i-ZF (29)

in equation (ZQ) , the equilibrium quantities are again those of



~
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a uniformly rotating mass of fluid of constant density. Limiting ourselves

to small rotation, the pressure is given by ( Lamb, 1932; Chandrasekhar

1962 )
F 2,2 ap 2.1 _ 2 p? _ 2 52
-F:—z‘—fzrmé’ 7fC7f 3T 3R(/ 59)

5 e’k + ef‘(Z 35Q19)} (30)

where we have made p vanish on the boundary surface

A(B) = {a[/+e s.;ﬁe—-“")] (31)

The semi-axis ( a,, a,va,,6 d; ) of the rotating ellipsoid i§ related
to R by

R(1++e)
a5=R(/‘3L€l) (32 )

where e is the eccentricity given by

50t | (33)
§TGP

e* =

By making use of ({&’) , ({?) , and (30) » wWe can rewrite equation
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(2‘5) to the second order of 43

. 20 13 :
_&°L§9l+20m29 o+ = —--TL_ S5 T oAV Sur 16

N 37
+ L {—E—o{v‘mze (r+3) -3 T6PT53

“vmap (3= $R)F VD) )

An examination of (34) indicates that in the desired solution, the & -
dependence of £91_ may be taken as Smlf . Thus by also making use of

equation (ZX) , we can write

fez = f('r) A 26
£, = - l](('f‘) Cor 6 (35?)

and for the internal gravitational potential:

%1(1*,9): j,,(r)4 ﬂl(r)ﬁ(e) 3¢ )

with ﬁo(r) , 31(1‘) and f(’f) still to be determined.
By substituting (35) and (56) into (5‘-/-) , we would then have
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3
-

—af 2ur = 2 ED - GF e g S ar (143)
L 2 2 2] > J
— éin‘éf -J((vf) -7 Y76 (’3’7 %R )}"9"6(1\/}; Sm2b

(37)

By inspection, we see that -}('r)f-)f gives a solution providea  that )\

satisfies

Mames- o]

fhofdtgpdr GO

where we have made use of the fact that in this case 3";'5 d""‘,g* =0
while from Poisson, s equation, we have 9,_(1-) = ia. ¢

The constant ﬁ). can be determined in a straightforward man -
ner by demanding that the gravitational potential and its derivatives are

continuous on the disturbed boundary. The result is

(Lérréfx - W? )

(39)
which therefore gives a )\ from equation (33)

1092

_ 15
A= %1 %0 & Y) (ko)
&,




Summing up, our solution for the Lagrangian displacement is:

E.=olr —20°AT oo

§9 = -ﬂ.z)\’f' o 2.6

S

. . {
2 ra dT 5w G /4‘. )
and . the new boundary becomes:

AB) = A(o>{a+ demst - 207X "0 c@(t} (%2)

with ¥(4) given by equation(3') .

We remark here that although our solutions are obtained by inspection

from the @ -equation (25) , they satisfy all the boundary conditions.

P
Furthermore, equation (-Uf) gives an expression for @,

A6 26N = -kt (1-30)d + LY TGEA (¥3)

On substituting for ﬁl and )\ the values as given by equations (37) and
(40) , we have

6o= F(5-37) (44)



which agrees with the corresponding expression of Ledoux. ( Ledoux,

1945 )
with (¥ ‘) and (‘/'1> s the quadrupole moment tensor aan be

readily evaluated, the time-dependent part of which is :

5 Nt
By = g rpaRicnct (Hr-f) 5 05

The time-averaged energy loss is then given by equation (/)as:

N 4 L v\
SRS (- DS W

Sinte no angular momentum is lost in this case, the angular N
velocity JL. will remain constant. Thus, all the energy loss is at the 'e;;cpense
of oscillation. With g given by equation (41) , the total pulsation
energy is: ”""'

3 P 2 N
E = T wmR 4”&, (47)

A comparison of (‘/‘6) and (‘l]) shows that the energy decreases exponen-

tially given by

o (+) ket

dlc) e~ X

J

(42)

o:_'_z_ GmR: (45 _ ¢
o K s s (TY 5 (+9)
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NUMERICAL ESTIMATES AND CONCLUSION
We now assemble the various expressions for the damping of
oscillation, using data relevant to a neutron-star, mass ='./ )710 » R -"-‘Io‘cm i
For the oscillation frequency, we use ( = —3)(103 cps for the radial
mode ( Tsuruta, Wright and Cameron, 1965 )'I and the expression for an

incompressible fluid for the non-radial ones { Lamb, 1932 ) ‘

2 _ gn(n-1) 4
6p = (:%’:,) L ngy (§0)

For the -Px -oscillation, equations (lg) and (1 ?) givey:
-~ T
dgo (t_) = Jzo/o)e

where

= C’”’@)ﬂ- R™ s,

(8.3 x 157%) 7 R0

= /-ZX/OlJe(,-’ (5-,}

Ky

n

For _B’ -oscillation, equations (—2/) and ().1) give:
Aypolo)

0(4:; (1’) _ 7
/"{“th 4,:, t

where
= (4t x 107 ) Tm RY &)

= 4.3 X /0g sec ™! é.l)

The problem of gravitational radiation from neutron stars has
been considered by a number of investigatiors, the first of
winom we wish to acknowledge 1s Prof. J.A.Wheeler.
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For rotation and nearly radial oscillations, equations (‘f&’) and (47) give:

dlt) = dlo) e F!

where

Ko = (I-{ X /a‘“)% == ¢

1. 1x107"% 4 (53)

"

In equation(SS) , we have useda ¥~ /§ , as a crude compromise between
Y= 4/3 for an extremely relativistic, completely degenerate fermi gas
and ¥=5/3 fora periect, monoatomic gas. We also remark that Ko is
independent of the oscillation frequency in contrast to K. and Ky

From these expressions, we can easily obtain an- upper limit
to the total oscillation energy after any lenghth of time by taking the
orifginal amplitude to be unity. We remember that we have assumed uniform
density for the equilibrium configuration in our work, which is of course
not true for a neutron-star. However, our calculations would still give,
a very good idea under what conditions the oscillation emergy can still be
large enough to be of interest in phenomena in supernova remanants.
This can be compared with the result of Finzi( Finzi, 1965 ), who showed
that radial oscillatons can be effectively damped by the J -processes

at a rate given bys

‘j——f - & 3& X /0’8}( 049 &'jg gm_; sec ™! (‘5‘})




17

The results of damping in the various cases ate tabulated as follows:

Energy i ergs

a,t‘ {I‘M

Mode I’;::T; [ day l year 10 yeavs
P (n=to?sec’) | 27x 105 | 23x 0% | 6.0x 10" o
P.(n=r0se) | a7x 0% | a7xi0%! a7xto¥! y.4x (0"
R, (0= Isec™’) 1 a7x 105" | S7w10%' | a7xr05! | a7xs0%]
k. (ﬁ;r‘.lé,,) 7xo™ | A rxio| 3. 0x0% | 3.0 x10%7
' 1% X (0%* O 0 o
by lgxro¥t | 3803 | 1ix o | 1rxi0”

¥From the table, we thus see that the only significant surviving mode after

a time of |0

3

years would be radial modes if JL £ {0 kc-.: By comparison,

the angular velocity of bifurcation for an incempressible object would be

3 -
about 35X/0 , while the centrifugal acceleration at the equator would

become comparable to the gravitational acceleration for JU about equai

to /.4X 10" sec™’

The small angular velocity required for effective energy storage

Poses a serious problem with regard to the anguiar momentum of the

neutron star. If we assume that the neutron star is formed by contraction

.. - ; . / .
frorn an original star of mass = /'ﬂa and radius &~ /0 ((»*V , then if angu-

lar momentum is conserved, the angular velcoity of the original star




18

would have to be 10-Ysec~l, much slower than that for normal
stars. It thus appears that a considerable amount of angular
nonentum has to be lost for an effective enersy storage in the
radial nodes. Of course, angular momentum can be lost through
gravivational radiation. The rate, however, is extremely in-
signilicant unless he neutron star forms a Jacobi ellipsoid of

larze asymnetry.

The rescarch reporied in this psper has in part been
supporved by tThe National Aeronautics and Space Administration
nder Contract NGR 33-0CT~052, by the Air Formc O0ffice of
Sclenti’ic Reseaich wder «ontract AF 49 (037) 1358, end by
a John Tyndall Fellowship Crom Columbia University during

the academic year 19065-66.

I wish to thanikk Professor L. Woltjer, who suggested the
problam and very patiently end constantly gave guidance till

itos completion.
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